A Convenient Electrochemical Method for Conversion of 4-Haloacetophenone to 1-(4-Halophenyl)ethanol

Yoshikazu IKEDA

National Chemical Laboratory for Industry, Higashi, Tsukuba, Ibaraki 305

In the presence of a catalytic amount of Sb(III), 4-fluoro-, 4-chloro-, 4-bromo-, and 4-iodoacetophenone were converted into the corresponding 1-(4-halophenyl)ethanols by an electrochemical method (-3.7 mA/cm², 6F/mol, Pb cathode). Each alcohol yielded 91, 94, 98, and 94%, respectively.

1-(4-Halophenyl)ethanols (2) are valuable precursors of β -arylaliphatic acids having pronounced physiological activity.¹⁾ The known method for the preparation of 2 has been restricted to a reduction of 4-haloacetophenone (1) using reducing agents such as sodium borohydride.¹⁾

We have previously reported that a reduction of acetophenone could be catalyzed by electrogenerated zerovalent Sb, and gave 1-phenylethanol with a good yield.²⁾ During our investigation, we wanted to examine whether this electrochemical method could be extended to haloacetophenone which contains two potentially reducible functions.

A typical procedure is as follows: A solution containing $4\text{-iodoacetophenone}^3$) (0.8 g, $3.3 \times 10^{-3} \text{mol}$) and a catalytic amount of SbCl₃ (30 mg, $1.3 \times 10^{-4} \text{mol}$) dissolved in a mixed solvent (50 ml) of aqueous 2 M-HCl, EtOH, and n-BuOH (2.5 : 1.0 ; 1.5 V/V) was put into the cathodic compartment of a divided cell using a porous cup as a diaphragm. The solution was electrolyzed using a Pb plate (ca. 21.3 cm²) as a cathode and a Pt plate (ca. 4.0 cm^2) at a constant current density (-3.7 mA/cm²) corresponding to the reduction potential of SbCl₃ (-0.25 V vs. Ag/AgCl) while stirring at room temperature. After passage of 6F/mol, usual workup of the reaction mixture and recrystallization of the crude product from hexane gave 1-(4-iodophenyl) ethanol (0.7 g, 87%, Run 16).⁴)

SbCl₃ has a significant effect on both the conversion of **1** and the product distribution (Table 1). The dehalogenation and the formation of the hydrodimer **3** were retarded by the addition of a catalytic ammount of SbCl₃ which are affected to the halo-substituent R and the formation of **2** significantly increased.

The mechanism for the selective reduction of 1 has not been clarified, but it is likely that the electrocatalytic hydrogenation by SbH_3 , 5,6 which may be generated through a reduction of Sb deposited on the electrode surface by the nascent hydrogen atom, takes place in this system.

Product Distribution of 1-(4-Halophenyl)ethanol Table 1.

		Condition a)		1					
Run	х	$SbCl_3$	Current	Conv.	Product yields/%				
_		$x10^{-5}mol$	F mol ⁻¹	8	2	3	4	5	6
1	F	0.0	2	97	1	96	0	0	0
2	F	1.7	2	54	54	0	0	0	0
3	F	1.7	6	91	91	0	0	0	0
4	Cl	0.0	2	81	28	45	0	0	9
5	Cl	1.7	2	62	62	0	0	0	0
6	Cl	1.7	6	94	94	0	0	0	0
7	Br	0.0	2	83	17	46	0	0	21
8	Br	1.7	2	73	30	0	0	0	49
9	Br	3.3	2	58	58	0	0	0	0
10	Br	3.3	6	98	98	0	0	0	0
11	I	0.0	2	65	23	0	2	3	37
12	I	1.7	2	46	9	0	1	1	55
13	I	3.3	2	61	28	0	1	1	33
14	I	6.5	2	46	43	0	2	1	0
15	I	13.0	2	49	49	0	0	0	0
16	I	13.0	6	94	94	0	0	0	0

a) Conditions : $1 = 3.3 \times 10^{-3} \text{mol}$; -3.7 mA/cm^2 , Analyzed by GLC.

References

- 1) M. Kuchar, B. Brunova, V. Rejholec, Z. Roubal, and O. Nemecek, Collect. Czech. Chem. Commun., 41, 633(1976).
- 2) Y. Ikeda and E. Manda, Chem. Lett., 1989, 839.
- 3) This halide was prepared from iodobenzene by the method of Mastui, Nippon Kagaku Zasshi, 45, 1094(1942).
- 4) Colorless crystal: mp 40-42 $^{\circ}$ (lit. 7) mp 40-42 $^{\circ}$); IR(KBr) 3400, 3200, $2980, 2900, 1585, 1085, 535 \text{ cm}^{-1}.$
- 5) L. Tomlinson, J. Electrochem. Soc., 111, 592(1964).
 6) O. E. Nasakin, G. N. Petrov, V. V. Alekseev, V. K. Promonenkov, and A. V. Sukhobokov, Zh. Prikl. Khim. (Leningrad), 55, 1399(1982).
- 7) R. W. Strassburg, R. A. Gregg, and C. Walling, J. Am. Chem. Soc., 69, 2141 (1947).

(Received May 15, 1990)